Case

- 52 yo male comes to your office for a routine visit and has no concerns.
- PE-mildly hypertensive
 - You find a 2/6 systolic murmur at the right second intercostal space
- What valvular lesion does he have?
- What can you do to confirm your suspicion besides an echo?

Goals and Objectives

- Discuss common valvular lesions
- Examine the clinical context by which valvular lesions could be determined
- Recognize different physical exam maneuvers or findings to assess valvular lesions
- Understand other key laboratory or radiologic studies to assess valvular lesions
- Recognize treatment options for each of the common valvular lesions
PASS YOUR BOARDS!

KEY CONCEPTS
- Understand key historical facts to guide you in understanding valvular conditions
- Use location of the murmur to start your assessment
- Use other physical exam findings to help you narrow your thought process
- Then use other studies to further refine your thoughts

AORTIC STENOSIS
Etiology

- Congenital bicuspid valve
 - 1% of population
 - Male predominance (age: 40-60's)

- Rheumatic heart disease
 - Less common cause in developed nations

- Calcification of normal valve
 - Formerly considered degenerative
 - Now clearly active inflammatory process similar to CAD
 - Lipid accumulation, inflammation, calcification
 - Usually occurs in 60s to 80s

- Congenital Malformation
 - More common cause in young adults

Pathophysiology

- AS obstruction develops gradually
 - LV hypertrophies to accommodate systolic pressure overload

- Concentric hypertrophy is appropriate and beneficial for adaptation
 - However adaptation causes consequences
 - Reduced coronary blood flow
 - Subendocardial ischemia, contributing to systolic or diastolic heart failure
 - Increased sensitivity to ischemic injury with larger infarcts and higher mortality rates
 - Elderly women at risk of inappropriate degree of hypertrophy leading to higher morbidity and mortality

Symptoms

- Key symptoms: Angina, Syncope, CHF
 - Angina
 - 2x reduced coronary blood flow reserve
 - 50% dead in 5 yrs (w/o AVR)
 - Risk of sudden death: 10%
 - Syncope
 - Usually related to exertion
 - 50% dead in 3 yrs (w/o AVR)
 - Risk of sudden death: 15%
 - CHF
 - 50% dead in 2 yrs (w/o AVR)
 - Risk of sudden death: 25%
Physical Findings

- Diamond shaped, crescendo-decrescendo systolic murmur
 - Loudest in aortic area
 - Radiates to carotids
 - Mild disease: murmurs peaks in early systole
 - Worsening disease: murmur peaks progressively later
 - Can radiate to apex causing confusion with MR (Gallavardin phenomenon)
- Delay and prolongation of carotid pulse (parvus et tardus)
- S4 with left ventricular hypertrophy
- S3 with left ventricular failure
- Exclusion of severe AS is a normally split S2

Diagnosis

- Normal valve area: 3-4 cm²
- EKG: LV hypertrophy
- CXR: Usually non-diagnostic
- Echo:
 - Obtain when murmur is >3/6, a single S2 or symptoms due to AS
- Cardiac cath
 - Recommended in pts
 - Echo with discrepant results
 - Patients at risk for unrevealed CAD
 - Patients with chest pain, LV dysfunction
- Exercise Testing
 - Do not perform in symptomatic pts given high risk
 - Okay to perform in asymptomatic pts or in patients with indeterminate sx

Classification of Echo Findings

<table>
<thead>
<tr>
<th>Aortic Jet Velocity (m/s)</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤2.3</td>
<td>2.4-2.9</td>
<td>3.0-4.0</td>
<td>>4.0</td>
</tr>
</tbody>
</table>

| Mean gradient (mmHg) | ≤20 | 20-40 | >40 |

| Aortic Valve Area (cm²) | >1.5 | 1.0-1.5 | <1.0 |

| Indexed Aortic Valve Area (cm²/m²) | ≤0.60 | 0.60-0.85 | >0.85 |

| Velocity ratio | ≤0.25 | 0.25-0.50 | >0.50 |

| S1 | S2 |
Clinical Management

- Asymptomatic pts
 - With mild stenosis: valve narrowing occurs with a mean gradient increase of 6-7 mmHg/yr and a decrease in valve area of 0.1 cm²/yr
- Echocardiography
 - Obtain to assess severity
 - Re-evaluation in known AS if changing signs or symptoms
 - During pregnancy if known AS
 - TTE every year for asymptomatic pts with severe AS
 - TTE every 1-2 years for moderate AS
 - TTE every 3-5 years for mild AS
 - Clinical evaluation for all types yearly

Treatment

- Aortic Valve Replacement (Class 1 indications)
 - Symptomatic pts with severe AS
 - Severe AS undergoing CABG
 - Severe AS in pts undergoing surgery on the aorta or other valves
 - Severe AS and LV systolic dysfunction
- Antibiotic prophylaxis:
 - For recurrent rheumatic fever in pts with rheumatic AS

Transcatheter Aortic Valve Replacement

- High risk pts with aortic stenosis who are not surgical candidates
- Partner Trial & FRANCE 2 Trial
 - Lower death rate at 30 d and 1 year
 - Major vascular complications significantly higher at 30d
 - Partner trial: 3.8% vs 2.1%; at 2 yrs: 7.7% vs 4.9%
 - More frequent adverse events in surgical group—major bleeding, new onset afib
 - Increased risk of heart block (2 fold)
 - Paravalvular aortic regurgitation
Hypertrophic Cardiomyopathy

Etiology
- Common genetic abnormality
 - 1 in 500 persons
- Autosomal dominant pattern
- Mutations found in 9 genes encoding sarcomeric proteins (over 900 mutations)
 - MYH7 (cardiac β myosin heavy chain), MYBPC3 (cardiac myosin binding protein)
- M:F 2:1
- Family history of “sudden death” or arrhythmia
- Obstruction caused by hypertrophied septum and abnormal anterior motion of the mitral valve

Symptoms
- Present between 20-40 years
 - Occasionally after 50 y.o.
- Symptoms not proportional to degree of hypertrophy
 - Dyspnea on exertion: most common
 - Chest pain
 - Dizziness
 - Syncope: during or after heavy exertion
- Atrial fibrillation
 - Occurs commonly in HCM
Athletes and HCM

Questions to ask:
- Have you ever passed out or nearly passed out during exercise?
- Have you ever passed out or nearly passed out after exercise?
- Have you ever had discomfort, pain or pressure in your chest during exercise?
- Does your heart race or skip beats during exercise?
- Has a doctor ever told you that you have a hear murmur?
- Has a doctor ever ordered a test for your heart (EKG, echo)?
- Has anyone in your family died for no apparent reason?
- Does anyone in your family have a heart problem?
- Has any family member or relative died of heart problems or of sudden death before age 50?

Physical Exam

Systolic ejection murmur
- Less rasping than valvular aortic stenosis
- Maximal between apex and LLSB
- NOT well transmitted into the neck
- Loudest with the following maneuvers:
 - Straining period of valsalva maneuver
 - Standing after squatting

Bifid carotid pulse
- 80% of blood volume ejected during the first half of systole

Audible S4, Palpable A wave

Diagnosis

Echo
- Asymmetrical septal hypertrophy

EKG
- LVH and increased Q waves
Treatment

- No symptoms-no treatment
- If symptoms present
 - Therapy aimed to improve diastolic filling
 - B adrenergic blocking drugs
 - Verapamil
 - Surgical treatment
 - If refractory severe symptoms (<5% of pts)
 - Myotomy-myectomy or alcohol injection

AORTIC REGURGITATION

Etiology

- Any disease conditions which renders the aortic leaflets incompetent
 - Rheumatic heart disease (most common worldwide)
 - Bicuspid valve, calcific degeneration
 - Hypertension
 - Syphilis
 - Connective tissue disorders (Marfan)
 - Arthritic disorders (ankylosing spondylitis, rheumatoid arthritis, reactive arthritis syndrome)
 - Cystic medial necrosis
 - Aortic dissection
 - Infective endocarditis
Symptoms

- Acute
 - Acute left sided heart failure with shock
 - Pulmonary edema
 - Angina (may occur with flushing)
- Chronic
 - Left sided heart failure symptoms: DOE, orthopnea, fatigue secondary to volume and pressure overload
 - When sx develop mortality increases to 10-20% per year

Physical Findings

- High pitched, blowing, decrescendo diastolic (early) murmur at LSB in expiration (sitting forward)
- Wide pulse pressure (e.g. 140/40)

Physical Findings

- Other findings with chronic AI:
 - Head bobbing (De Musset’s)
 - Pistol shot sounds over the femoral arteries (Duroziez)
 - Pulsations in the nail bed (Quincke’s)
 - Water hammer pulse (Corrigan)
 - Retinal pulsations
 - Increase in femoral systolic pressure >40mmHg over brachial artery
Other Physical Exam

- Asymptomatic pts with mild AR, little to no LV dilatation, normal LV systolic function
 - Seen on yearly basis but echo not necessary every year (every 2-3 yrs)
- Asymptomatic pts, severe AR, significant LV dilatation, normal systolic function
 - H&P every 6 months, echo every 6-12 months
- Advanced LV dilatation (EDV>70mm)
 - Risk of developing symptoms 10-20% per year
 - Echo every 4-6 months

Testing

- Asymptomatic patients with normal left ventricular function (but LV dilation)
 - Afterload reduction is recommended
 - Nifedipine, Hydralazine, ACE-inhibitor
 - 2005 N Engl J Med article
 - 95 pts with severe aortic regurgitation
 - Treated with nifedipine (20 mg BID or enalapril (20 mg OD) or no treatment
 - Rate of aortic valve replacement the same in all groups
 - Criticisms of the study
 - Small number of pts, inadequate control of BP
 - Final conclusion: the current doses recommended by an earlier study do not delay the progress of disease requiring valve replacement

Treatment
Treatment

- Class I indication for surgery
 - Symptomatic patients with severe AR
 - Asymptomatic pts with chronic severe AR and LV systolic dysfunction (EF<50%)
 - Pt with chronic severe AR undergoing CABG
- Acute Aortic Regurgitation
 - Any signs or symptoms even if mild dictates surgery
 - Medical mortality as high as 75%

MITRAL STENOSIS

ETIOLOGY

- F:M 2:1
 - Develops in 40s and 50s
 - Generally rheumatic in nature; rarely is congenital
 - Pure or predominant MS occurs in approximately 40% of all patients with rheumatic heart disease
NATURAL HISTORY
- Continuous, progressive, lifelong disease, usually consisting of a slow, stable course in the early years
- Progressive acceleration in the later years
- 20-40 years from the occurrence of rheumatic fever to onset of symptoms
- Almost another 10 years before symptoms become disabling
- 0-15% 10 year survival once significant/limiting symptoms develop

NATURAL HISTORY
- Mortality
 - Progressive heart failure 60-70% of pts
 - Systemic embolism 10-30% of pts
 - Pulmonary embolism 10%
 - Infection in 1-5% of pts

PATHOPHYSIOLOGY
- Normal valve orifice: 4-5 cm²
- Narrowing of valve area before producing symptoms: <2.5 cm²
- Valve area >1.5 cm² usually does not produce symptoms at rest
- Elevated left atrial pressure raises pulmonary venous pressure causing dyspnea
SYMPTOMS AND COMPLICATIONS

- Elevations of pulmonary capillary pressure:
 - extreme exertion, excitement, fever, severe anemia, paroxysmal tachycardia, sexual intercourse, pregnancy, and thyrotoxicosis
 - Orthopnea, PND, and pulmonary edema
 - If RV failure: ascites, edema
 - Hemoptysis: common in MS but not in other causes of left atrial hypertension
 - High left atrial pressure ruptures small bronchial veins

- Atrial arrhythmias
 - Premature contractions, paroxysmal tachycardia, flutter and fibrillation
 - Occur with increasing frequency in moderately severe MS existing for several years
 - Atrial fibrillation develops in 30% to 40% of patients with symptomatic MS
 - Risk of arterial embolization (10-30%), especially stroke, is significantly increased in patients with atrial fibrillation

- Recurrent pulmonary emboli
 - sometimes with infarction
 - important cause of morbidity and mortality late in MS

- Pulmonary infections
 - bronchitis, bronchopneumonia, lobar pneumonia

- Chest pain
 - 10% of pts with severe MS
PHYSICAL DIAGNOSIS

- First heart sound is accentuated and snapping
- Opening snap after aortic valve closure
- Low pitch diastolic rumble at the apex
- Presystolic murmur

Clinical Management

- Afib
 - Digoxin, BB
- Anticoagulation
 - Indicated in MS with afib
 - MS with prior embolic event
 - MS and left atrial thrombus

Clinical Management

- Asymptomatic patients
 - If normal sinus rhythm, no therapy
 - Symptoms of mild dyspnea and orthopnea: treat with diuretics
 - Limit exercise to symptoms
- Symptomatic pts
 - Mechanical correction for increased symptoms or pulmonary hypertension
 - Mitral valve valvotomy
 - Mitral valve replacement or open commissurotomy (if unfavorable valve anatomy)
MITRAL REGURGITATION

ETIOLOGY
- Chronic rheumatic heart disease is the cause in about 1/3rd of patients
 ▪ Rheumatic MR occurs more frequently in males
- Degenerative forms more common in US
- Most common in the US is MVP
- Functional MR occurs with any cause of mitral annulus enlargement or myocardial infarction
- Acute MR may occur secondary to infective endocarditis, acute myocardial infarction, or trauma

SYMPTOMS
- Fatigue, exertional dyspnea, and orthopnea are most prominent with chronic, severe MR
- Hemoptysis and systemic embolization occur less frequently in MR
Physical Findings

- Usually apical holosystolic murmur with radiation to the axillae
- Increases with expiration, squatting, and hand grip
- S3 may be a finding of severe MR

EVALUATION

- EKG: left ventricular hypertrophy
- CXR: left atrial enlargement
- Echo: extent of left atrial and ventricular enlargement

Evaluation

- Echo
 - Determining cause of MR
 - Assessment of LV function
 - Change in signs or symptoms
 - Baseline determination of LV size and function
Follow Up

- Asymptomatic pt with severe MR
 - Follow up every 6-12 months
- LV enlargement, pulmonary HTN or LV dysfunction
 - No participation in competitive sports

Treatment

- Medical
 - Restrict physical activities that produce dyspnea and fatigue
 - Reduce sodium intake and induce sodium excretion with diuretics
 - Vasodilators, BB, digitalis, and ACE-I are used
- Surgical: Symptomatic MR
 - Pts with severe MR and severe limitations despite optimal medical management

Treatment

- Surgery
 - Asymptomatic MR
 - Effective regurgitant orifice independently predicted survival
 - 40mm2 orifice: 5x risk of death from cardiac causes and cardiac events
 - 5 yr death rate of any cause-22%
 - 5 yr adverse event (death from cardiac causes, heart failure, new afib)-33%
 - NJ EM 2005

- Effective regurgitant orifice independently predicted survival

Treatment

- Medical Therapy
 - No generally accepted therapy
 - If LV dysfunction, ACEi, BB and pacing have been shown to reduce severity of MR
- Surgery (class I indication)
 - Symptomatic pts with acute, severe MR
 - Chronic MR with functional class II, III or IV symptoms but no LV dysfunction
 - Asymptomatic pts with severe MR and mild-moderate LV dysfunction

MITRAL VALVE PROLAPSE

Etiology

- Most common form of valvular heart disease- 2-6% of the population
- MVP has become the most common cause of isolated severe MR
- Cause of MVP is unknown in a majority of pts
- More common in females between ages of 14 and 30 years
Symptoms

- Many have chest pain which is difficult to evaluate.
 - Often substernal, prolonged, poorly related to exertion, and rarely resembles typical angina
- Arrhythmias-PVCs, PSVT, VT-have been reported and may cause palpitations, lightheadness, and syncope

Symptoms cont’d

- Transient cerebral ischemic attacks have been reported.
- Infective endocarditis may occur in patients with MR associated with MVP
- Sudden death is a rare complication

Physical Findings

- Most important finding is the mid or late systolic click.
 \[\text{s1} \quad \text{c} \quad \text{s2} \]
- May be followed by high pitched late systolic crescendo-decrescendo murmur, occasionally “whooping” or “honking” at the apex
Physical Findings

- Standing and valsalva maneuver move the click closer to the first sound

\[S_1 \
\text{C} \
S_2 \]

CLINICAL COURSE

- Most with benign course
- Approx 10% of pts (with thickened leaflets)
 - Infective endocarditis
 - Stroke
 - Progression to severe MR (men 2x more)
 - Sudden death

Management

- ASA for symptomatic pts with MVP who experience TIA
- MVP with afib: coumadin if age >65 or with HTN, MR murmur or heart failure
- MVP with afib: asa if age <65 and no history of above
- MVP, h/o stroke: warfarin recommended for pts with MR, afib, LA thrombus
Treatment
- Reassurance of the asymptomatic patient without severe MR or arrhythmias
- Infective endocarditis prophylaxis in patients with a systolic murmur
- Beta blocker treatment for atypical chest pain

TRICUSPID STENOSIS

Etiology, Symptoms, Physical Findings
- Rheumatic fever is the most common cause
- Rare conditions such as carcinoid tumor, right atrial myxoma
- Symptoms of fatigue and dyspnea
- Diastolic murmur heard best along the LLSB
TRICUSPID REGURGITATION

ETIOLOGY
- Most commonly secondary to hemodynamic load on the right ventricle
- Primary valve abnormality
 - Infective endocarditis
 - Carcinoid syndrome
 - Rheumatic involvement of tricuspid valve
- Secondary valve abnormality
 - Pulmonary hypertension
 - Left ventricular dysfunction

SYMPTOMS
- Right sided failure
 - High jugular venous pressure
 - Ascites
 - Lower extremity edema
DIAGNOSIS
- Increased JVP
- Hepatic enlargement/liver pulsation
- RV enlargement (parasternal lift)
- Holosystolic murmur
 - Heard best left lower sternal border
 - Increases with inspiration

TREATMENT
- Aimed at underlying cause
 - LV dysfunction
 - RV dysfunction
 - Pulmonary hypertension
- Rarely ever do surgery

INFECTIVE ENDOCARDITIS
AND COMPLICATIONS
Native Valve Endocarditis

- Symptoms begin within 2 weeks of the inciting bacteremia
- Acute endocarditis is caused by S. aureus (50-70%)
- In the non-IVDU, the aortic valve is involved

Systemic manifestations

- Fever, drenching night sweats, arthralgias, myalgias, and weight loss
- Murmurs, valve ring abscess, myocardial infarction, myocardial abscess, diffuse myocarditis are all complications
- CHF is the most common complication, occurring more with left sided endocarditis

Extracardiac Manifestations

- Embolic events
 - Infarction of the lungs in right sided lesions
 - Infarction of brain, spleen, or kidneys in left sided endocarditis
- Immunologic manifestations:
 - Roth spots, glomerulonephritis, meningitis, petechiae, splinter hemorrhages, Osler’s nodes, Janeway lesions
IVDU Endocarditis

General
- Murmurs and heart failure usually absent
- Septic pulmonary complications occur in 75% of these patients
- S. aureus is the usual pathogen

Treatment
- S. aureus
 - Nafcillin, Oxacillin with or without Gentamycin
 - If PCN allergy: Cefazolin with or without Gentamycin or Vancomycin
 - If MRSA: Vancomycin
Physical Exam Maneuvers

P.E. Maneuvers

- **Respiration**
 - Inspiration: increases right sided murmurs
 - Expiration: increases left sided murmurs

- **Valsalva**
 - All murmurs decrease except HCM and MVP which increase in intensity

- **Standing**
 - All murmurs decrease except HCM and MVP which increase in intensity

P.E. Maneuvers

- **Squatting/Passive Leg Raise**
 - All murmurs increase in intensity except HCM and MVP which decrease in intensity

- **Hand grip exercise**
 - Murmurs of PS, MS, MR, VSD, and AR increase
 - HCM often decreases with near max hand grip
P.E. Maneuvers

- Postventricular premature beat/afib
 - Systolic murmurs due to AV valve regurgitation do not change, diminish or become shorter (MVP)
 - Murmurs due to stenosis increase in intensity following a premature beat
- Transient arterial occlusion
 - MR, VSD, and AR only increase in intensity

Common Valvular Heart Diseases:

<table>
<thead>
<tr>
<th>Systolic Murmurs</th>
<th>Diastolic Murmurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic stenosis</td>
<td></td>
</tr>
<tr>
<td>Mitral insufficiency</td>
<td></td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td></td>
</tr>
<tr>
<td>Tricuspid insufficiency</td>
<td></td>
</tr>
</tbody>
</table>

S1 S2 S1